Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
FASEB J ; 33(12): 13367-13385, 2019 12.
Article En | MEDLINE | ID: mdl-31553893

Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.


Ferrochelatase/metabolism , Heme/biosynthesis , Leishmania major/growth & development , Leishmaniasis, Cutaneous/metabolism , Protozoan Proteins/metabolism , Psychodidae/metabolism , Virulence , Amino Acid Sequence , Animals , Coproporphyrinogen Oxidase/metabolism , Female , Ferrochelatase/chemistry , Ferrochelatase/genetics , Leishmaniasis, Cutaneous/parasitology , Macrophages/metabolism , Macrophages/parasitology , Male , Mice , Mice, Inbred BALB C , Protein Conformation , Protoporphyrinogen Oxidase/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Psychodidae/parasitology , Sequence Homology
2.
FEBS Lett ; 590(14): 2180-9, 2016 07.
Article En | MEDLINE | ID: mdl-27311405

Hyaluronidases (Hyals) are broadly used in medical applications to facilitate the dispersion and/or absorption of fluids or medications. This study reports the isolation, cloning, and industrial-scale recombinant production, purification and full characterization, including X-ray structure determination at 1.45 Å, of an extracellular Hyal from the nonpathogenic bacterium Streptomyces koganeiensis. The recombinant S. koganeiensis Hyal (rHyal_Sk) has a novel bacterial catalytic domain with high enzymatic activity, compared with commercially available Hyals, and is more thermostable and presents higher proteolytic resistance, with activity over a broad pH range. Moreover, rHyal_Sk exhibits remarkable substrate specificity for hyaluronic acid (HA) and poses no risk of animal cross-infection.


Bacterial Proteins/chemistry , Hyaluronoglucosaminidase/chemistry , Streptomyces/enzymology , Bacterial Proteins/genetics , Enzyme Stability , Hyaluronoglucosaminidase/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Streptomyces/genetics
3.
Mol Microbiol ; 101(6): 895-908, 2016 09.
Article En | MEDLINE | ID: mdl-27328668

Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor-mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin-derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin-derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.


Heme/metabolism , Hemoglobins/metabolism , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Trypanosoma brucei brucei/metabolism , Amino Acid Sequence , Animals , Cytosol/metabolism , Endocytosis/physiology , Leishmania/metabolism , Leishmaniasis/blood , Lysosomes/metabolism , Membrane Transport Proteins/metabolism , Protein Transport , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/parasitology
4.
Parasit Vectors ; 9: 7, 2016 Jan 05.
Article En | MEDLINE | ID: mdl-26728034

BACKGROUND: Mitochondria play essential biological functions including the synthesis and trafficking of porphyrins and iron/sulfur clusters (ISC), processes that in mammals involve the mitochondrial ATP-Binding Cassette (ABC) transporters ABCB6 and ABCB7, respectively. The mitochondrion of pathogenic protozoan parasites such as Leishmania is a promising goal for new therapeutic approaches. Leishmania infects human macrophages producing the neglected tropical disease known as leishmaniasis. Like most trypanosomatid parasites, Leishmania is auxotrophous for heme and must acquire porphyrins from the host. METHODS: LmABCB3, a new Leishmania major protein with significant sequence similarity to human ABCB6/ABCB7, was identified and characterized using bioinformatic tools. Fluorescent microscopy was used to determine its cellular localization, and its level of expression was modulated by molecular genetic techniques. Intracellular in vitro assays were used to demonstrate its role in amastigotes replication, and an in vivo mouse model was used to analyze its role in virulence. Functional characterization of LmABCB3 was carried out in Leishmania promastigotes and Saccharomyces cerevisiae. Structural analysis of LmABCB3 was performed using molecular modeling software. RESULTS: LmABCB3 is an atypical ABC half-transporter that has a unique N-terminal extension not found in any other known ABC protein. This extension is required to target LmABCB3 to the mitochondrion and includes a potential metal-binding domain. We have shown that LmABCB3 interacts with porphyrins and is required for the mitochondrial synthesis of heme from a host precursor. We also present data supporting a role for LmABCB3 in the biogenesis of cytosolic ISC, essential cofactors for cell viability in all three kingdoms of life. LmABCB3 fully complemented the severe growth defect shown in yeast lacking ATM1, an orthologue of human ABCB7 involved in exporting from the mitochondria a gluthatione-containing compound required for the generation of cytosolic ISC. Indeed, docking analyzes performed with a LmABCB3 structural model using trypanothione, the main thiol in this parasite, as a ligand showed how both, LmABCB3 and yeast ATM1, contain a similar thiol-binding pocket. Additionally, we show solid evidence suggesting that LmABCB3 is an essential gene as dominant negative inhibition of LmABCB3 is lethal for the parasite. Moreover, the abrogation of only one allele of the gene did not impede promastigote growth in axenic culture but prevented the replication of intracellular amastigotes and the virulence of the parasites in a mouse model of cutaneous leishmaniasis. CONCLUSIONS: Altogether our results present the previously undescribed LmABCB3 as an unusual mitochondrial ABC transporter essential for Leishmania survival through its role in the generation of heme and cytosolic ISC. Hence, LmABCB3 could represent a novel target to combat leishmaniasis.


ATP-Binding Cassette Transporters/metabolism , Leishmania major/genetics , Leishmaniasis/parasitology , ATP-Binding Cassette Transporters/genetics , Animals , Heme/metabolism , Humans , Iron/metabolism , Leishmania major/metabolism , Leishmania major/pathogenicity , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Models, Molecular , Protein Transport , Sulfur/metabolism , Virulence
5.
Chem Commun (Camb) ; 51(18): 3862-5, 2015 Mar 04.
Article En | MEDLINE | ID: mdl-25655841

For the first time the influence of the chirality of the gel fibers in protein crystallogenesis has been studied. Enantiomeric hydrogels 1 and 2 were tested with model proteins lysozyme and glucose isomerase and a formamidase extracted from B. cereus. Crystallization behaviour and crystal quality of these proteins in both hydrogels are presented and compared.


Aldose-Ketose Isomerases/chemistry , Amidohydrolases/chemistry , Hydrogels/chemistry , Muramidase/chemistry , Peptides/chemistry , Circular Dichroism , Crystallization , Microscopy, Electron, Transmission
6.
Arch Microbiol ; 196(7): 481-8, 2014 Jul.
Article En | MEDLINE | ID: mdl-24760293

Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.


Alphaproteobacteria/metabolism , Alphaproteobacteria/ultrastructure , Bacterial Proteins/metabolism , Magnetosomes/metabolism , Microscopy, Immunoelectron , Amino Acid Sequence , Bacterial Proteins/chemistry , Escherichia coli/metabolism , Magnetosomes/ultrastructure
7.
Article En | MEDLINE | ID: mdl-24316847

Pseudomonas aeruginosa is an opportunistic pathogen and one of the major model organisms for the study of chemotaxis. The bacterium harbours 26 genes encoding chemoreceptors, most of which have not been annotated with a function. The paralogous chemoreceptors PctA and PctB (Pseudomonas chemotactic transducer A and B) were found to mediate chemotaxis towards L-amino acids. However, the ligand spectrum of the receptors is quite different since the recombinant ligand-binding region (LBR) of PctA binds 17 different L-amino acids whereas that of PctB recognizes only five. To determine the molecular basis underlying this ligand specificity, PctA-LBR and PctB-LBR have been purified and crystals have been produced after pre-incubation with L-Ile and L-Arg, respectively. Initial crystallization conditions have been identified by the counter-diffusion method and X-ray data have been collected at 2.5 Å (PctA-LBR bound to L-Ile) and 3.14 Å (PctB-LBR bound to L-Arg) resolution. Crystals belonged to space groups P2(1)2(1)2(1) and P3(1)2(1), with unit-cell parameters a = 72.2, b = 78.5, c = 116.6 Å and a = b = 111.6, c = 117.4, respectively, for PctA-LBR and PctB-LBR. Molecular-replacement methods will be pursued for structural determination.


Arginine/chemistry , Bacterial Proteins/chemistry , Isoleucine/chemistry , Pseudomonas aeruginosa/chemistry , Amino Acid Sequence , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemotaxis/genetics , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Isoleucine/metabolism , Ligands , Molecular Sequence Data , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
8.
Proc Natl Acad Sci U S A ; 109(46): 18926-31, 2012 Nov 13.
Article En | MEDLINE | ID: mdl-23112148

Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate.


Bacterial Proteins/chemistry , Chemotaxis , Pseudomonas putida/chemistry , Receptors, Cell Surface/chemistry , Acetates/chemistry , Acetates/metabolism , Bacterial Proteins/metabolism , Binding Sites , Ligands , Malates/chemistry , Malates/metabolism , Protein Structure, Tertiary , Pseudomonas putida/metabolism , Receptors, Cell Surface/metabolism , Succinates/chemistry , Succinates/metabolism
9.
Mol Ther ; 18(5): 1046-53, 2010 May.
Article En | MEDLINE | ID: mdl-20179681

Cancer vaccines based on virus-like particles (VLPs) vectors may offer many advantages over other antigen-delivery systems and represent an alternative to the ex vivo cell therapy approach. In this study, we describe the use of penton-dodecahedron (Pt-Dd) VLPs from human adenovirus type 3 (Ad3) as cancer vaccine vehicle for specific antigens, based on its unique cellular internalization properties. WW domains from the ubiquitin ligase Nedd4 serve as an adapter to bind the antigen to Pt-Dd. By engineering fusion partners of WW with the model antigen ovalbumin (OVA), Pt-Dd can efficiently deliver WW-OVA in vitro and the Pt-Dd/WW complex can be readily internalized by dendritic cells (DCs). Immunization with WW-OVA/Pt-Dd results in 90% protection against B16-OVA melanoma implantation in syngeneic mice. This high level of protection correlates with the development of OVA-specific CD8(+) T cells. Moreover, vaccination with WW-OVA Pt-Dd induces robust humoral responses in mice as shown by the high levels of anti-OVA antibodies (Abs) detected in serum. Importantly, treatment of mice bearing B16-OVA tumors with WW-OVA/Pt-Dd results in complete tumor regression in 100% of cases. Thus, our data supports a dual role of Pt-Dd as antigen-delivery vector and natural adjuvant, able to generate integrated cellular and humoral responses of broad immunogenic complexity to elicit specific antitumor immunity. Antigen delivery by Pt-Dd vector is a promising novel strategy for development of cancer vaccines with important clinical applications.


Adenoviridae/genetics , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Ovalbumin/immunology , Viral Proteins/immunology , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , HeLa Cells , Humans , Immunotherapy , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Nedd4 Ubiquitin Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/genetics
10.
Dev Cell ; 10(6): 821-30, 2006 Jun.
Article En | MEDLINE | ID: mdl-16740483

The vacuolar protein sorting machinery regulates multivesicular body biogenesis and is selectively recruited by enveloped viruses to support budding. Here we report the crystal structure of the human ESCRT-III protein CHMP3 at 2.8 A resolution. The core structure of CHMP3 folds into a flat helical arrangement that assembles into a lattice, mainly via two different dimerization modes, and unilaterally exposes a highly basic surface. The C terminus, the target for Vps4-induced ESCRT disassembly, extends from the opposite side of the membrane targeting region. Mutations within the basic and dimerization regions hinder bilayer interaction in vivo and reverse the dominant-negative effect of a truncated CHMP3 fusion protein on HIV-1 budding. Thus, the final steps in the budding process may include CHMP protein polymerization and lattice formation on membranes by employing different bilayer-recognizing surfaces, a function shared by all CHMP family members.


Crystallography, X-Ray , HIV Infections , HIV-1/physiology , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Amino Acids, Acidic/chemistry , Amino Acids, Basic/chemistry , Conserved Sequence , Dimerization , Endosomal Sorting Complexes Required for Transport , HIV Infections/metabolism , HIV Infections/virology , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Structure, Secondary , Protein Transport , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity , Vesicular Transport Proteins/genetics , Virus Replication
11.
Traffic ; 7(8): 1007-16, 2006 Aug.
Article En | MEDLINE | ID: mdl-16749904

The endosomal sorting complex I required for transport (ESCRT-I) is composed of the three subunits Vps23/Tsg101, Vps28 and Vps37. ESCRT-I is recruited to cellular membranes during multivesicular endosome biogenesis and by enveloped viruses such as HIV-1 to mediate budding from the cell. Here, we describe the crystal structure of a conserved C-terminal domain from Sacharomyces cerevisiae Vps28 (Vps28-CTD) at 3.05 A resolution which folds independently into a four-helical bundle structure. Co-expression experiments of Vps28-CTD, Vps23 and Vps37 suggest that Vps28-CTD does not directly participate in ESCRT-I assembly and may thus act as an adaptor module for downstream interaction partners. We show through mutagenesis studies that Vps28-CTD employs its strictly conserved surface in the interaction with the ESCRT-III factor Vps20. Furthermore, we present evidence that Vps28-CTD is sufficient to rescue an equine infectious anaemia virus (EIAV) Gag late domain deletion. Vps28-CTD mutations abolishing Vps20 interaction in vitro also prevent the rescue of the EIAV Gag late domain mutant consistent with a potential direct Vps28-ESCRT-III Vps20 recruitment. Therefore, the physiological relevant EIAV Gag-Alix interaction can be functionally replaced by a Gag-Vps28-CTD fusion. Because both Alix and Vps28-CTD can directly recruit ESCRT-III proteins, ESCRT-III assembly coupled to Vps4 action may therefore constitute the minimal budding machinery for EIAV release.


Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/chemistry , Amino Acid Sequence , Conserved Sequence , Crystallography , Endosomal Sorting Complexes Required for Transport , Models, Molecular , Molecular Sequence Data , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/physiology , Sequence Homology, Amino Acid , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/physiology
12.
Ann N Y Acad Sci ; 973: 533-6, 2002 Nov.
Article En | MEDLINE | ID: mdl-12485923

Cyclopentenone prostaglandins, which are produced during inflammatory processes, may exert a negative feedback on inflammation. These reactive compounds may form covalent adducts with thiol groups in glutathione or in proteins. The transcription factor NF-kappaB is key for the expression of numerous proinflammatory genes. We have observed that treatment of mesangial cells with 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) inhibits the cytokine-elicited DNA binding activity of NF-kappaB, both in intact cells and in isolated nuclear extracts, thus suggesting a direct effect on DNA binding. By using a biotinylated 15d-PGJ(2) derivative, we have observed that 15d-PGJ(2) forms an adduct with the p50 subunit of NF-kappaB, as shown by Western blot and detection with horseradish peroxidase-conjugated streptavidin. In contrast, a p50 construct that bears a mutation in the cysteine residue involved in DNA binding (Cys62Ser) and is not susceptible to inhibition by 15d-PGJ(2) does not incorporate biotinylated 15d-PGJ(2). The labeling of several polypeptides after incubation of cells with biotinylated 15d-PGJ(2) suggests that there may be multiple targets for modification by 15d-PGJ(2). We propose that the covalent modification of NF-kappaB (and potentially other proteins) by 15d-PGJ(2) may contribute to the antiinflammatory effects of this prostaglandin.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclopentanes/pharmacology , Prostaglandins/pharmacology , Proteins/metabolism , Animals , Biotinylation , Cells, Cultured , Epoprostenol/pharmacology , Glomerular Mesangium/drug effects , Glomerular Mesangium/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism
...